Targeted deletion of *Sost* distal enhancer increases bone formation and bone mass

Nicole M. Collette^a, Damian C. Genetos^b, Aris N. Economides^c, LiQin Xie^c, Mohammad Shahnazari^d, Wei Yao^d, Nancy E. Lane^d, Richard M. Harland^e, and Gabriela G. Loots^{a,f,1}

^aPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550; ^bDepartment of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616; ^cRegeneron Pharmaceuticals, Tarrytown, NY 10591; ^dDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817; ^eDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; and ^fQuantitative and Systems Biology Department, School of Natural Sciences, University of California, Merced, CA 95343

Edited by Eric N. Olson, University of Texas Southwestern Medical Center, Dallas, TX, and approved July 16, 2012 (received for review April 30, 2012)

The Wnt antagonist Sost has emerged as a key regulator of bone homeostasis through the modulation of Lrp4/5/6 Wnt coreceptors. In humans, lack of Sclerostin causes sclerosteosis and van Buchem (VB) disease, two generalized skeletal hyperostosis disorders that result from hyperactive Wnt signaling. Unlike sclerosteosis, VB patients lack SOST coding mutations but carry a homozygous 52 kb noncoding deletion that is essential for the transcriptional activation of SOST in bone. We recently identified a putative bone enhancer, ECR5, in the VB deletion region, and showed that the transcriptional activity of ECR5 is controlled by Mef2C transcription factor in vitro. Here we report that mice lacking ECR5 or Mef2C through Col1-Cre osteoblast/osteocyte-specific ablation result in high bone mass (HBM) due to elevated bone formation rates. We conclude that the absence of the Sost-specific long-range regulatory element ECR5 causes VB disease in rodents, and that Mef2C is the main transcription factor responsible for ECR5-dependent Sost transcriptional activation in the adult skeleton.

osteocytes

Several rare genetic disorders that interfere with Wnt signaling have provided strong evidence that the "canonical" Wnt signaling pathway is critical in bone (1). The Wnt coreceptor LRP5 has been described as a modulator of bone mass where loss-offunction mutations cause osteoporosis-pseudoglioma syndrome (OPPG) (2), an autosomal recessive disorder characterized by low bone mass and skeletal fragility; conversely, gain-of-function Lrp5 alleles cause high bone mass (HBM) (3). Similar hyperactive osteoblast activity due to elevated Wnt signaling was observed when Sost, a secreted Wnt inhibitor, was mutated in knockout (KO) mice or in sclerosteosis patients who suffer from generalized hyperostosis (4-6). Lrp5 gene targeting or SOST overexpression in transgenic (TG) mice causes osteopenia (3, 7), whereas TG overexpression of G171V Lrp5 allelic variant causes HBM, similar to the Sost KO phenotypes (4, 8, 9). The recapitulation of the human phenotypes in mouse models supports the conclusion that canonical Wnt signaling plays a critical role in bone metabolism, and points to Sost and Lrp5 as key regulators of bone mass.

The skeletal phenotype describing sclerosteosis patients is similar to what has been documented for van Buchem (VB) disease. Although both VB and sclerosteosis map to the same locus on human chromosome 17 that includes the *SOST* transcript, the Sclerostin transcription unit was not affected in VB. All VB patients examined to date carry a 52-kb noncoding deletion, 35 kb downstream of *SOST* that results in the absence of postnatal *SOST* transcript and protein (10, 11). Although both sclerosteosis and VB are caused by sclerostin deficiency, the VB phenotype is a result of dysregulated *SOST* transcription. To identify the potential transcriptional regulatory elements responsible for *Sost* transcription in bone, we have characterized the expression of a human *SOST* transgene or an engineered allele corresponding to VB in mice. Only the wild-type (WT) *SOST* allele faithfully expressed *SOST* in the adult bone and thereby caused osteopenia, whereas the TG mice carrying the VB deletion allele were indistinguishable from WT (7). Cross-species sequence comparisons combined with in vitro and in vivo enhancer assays identified an evolutionarily conserved candidate enhancer element, termed *ECR5*, that drove reporter expression in UMR-106 cells and in the skeletal anlage of the murine embryo at embryonic day (E) 14.5 (7).

Despite wide interest in the manipulation of Sost as a skeletal anabolic therapy, only a modest amount of data has been generated describing the upstream regulatory pathways responsible for its transcription. We have shown in vitro that Sost transcription is controlled by both its proximal promoter and the distal enhancer, ECR5. Specifically, ECR5, which drives reporter gene expression in mature osteoblastic cells, mediates responsiveness to parathyroid hormone (PTH) (12) and TGF- β (13). PTH suppresses the activity of ECR5-luciferase constructs independently of the SOST promoter and repression occurs via a myocyte enhancer factor 2 (Mef2)-responsive element (12). Among the four Mef2 family members of transcription factors (Mef2A-D), only Mef2C and Mef2D were shown to be robustly expressed in mineralized bone (14), and we determined that Mef2C and Sost colocalize in UMR-106 cells and mouse osteocytes (12). The activity of ECR5 enhancer was increased by exogenous Mef2C and was inhibited by dominant-negative Mef2C cotransfection. Finally, siRNA-mediated knockdown of Mef2C-D significantly suppressed endogenous Sost expression (12). Together, these results identified Mef2C as a transcriptional regulatory protein in bone, and position it upstream of Sost as a critical transcriptional modulator of the ECR5 candidate enhancer to control bone-specific Sost expression.

In this study, we extend our in vitro results using TG and KO mice. We show that *ECR5* is sufficient to drive TG reporter expression in osteocytes, in adult mice. We also show that targeted deletion of *ECR5* reduces tissue-specific expression of *Sost*, increasing bone formation rates and causing HBM. As in VB patients, the hyperostosis in *ECR5* KO mice (*ECR5^{KO}*) is milder than observed in sclerosteosis patients and murine *Sost* KO models, suggesting that the 338-bp *ECR5* noncoding deletion is sufficient to recapitulate the phenotypes observed in VB disease. Using a combination of *Mef2C;Col1-Cre* and *Mef2C;Col1-Cre; ECR5-*TG compound mice, we show that *ECR5*-mediated osteocyte expression of *Sost* is dependent on Mef2C. In addition,

Author contributions: G.G.L. designed research; N.M.C., D.C.G., L.X., M.S., and W.Y. performed research; D.C.G., A.N.E., and R.M.H. contributed new reagents/analytic tools; N.M.C., W.Y., N.E.L., R.M.H., and G.G.L. analyzed data; and N.M.C., N.E.L., R.M.H., and G.G.L. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

¹To whom correspondence should be addressed. E-mail: loots1@llnl.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1207188109/-/DCSupplemental.

targeted ablation of Mef2C in osteoblasts and osteocytes also causes HBM, indicating that Mef2C is a critical regulatory protein in bone and controls *Sost* expression via *ECR5*, by functioning as a modulator of Wnt signaling and bone homeostasis. As such, the discovery and characterization of the Mef2C-Sclerostin transcriptional axis has important implications for the anabolic treatment of disorders in which bone loss is a significant component.

Results

ECR5 Drives Transgenic Reporter Expression in Osteoblasts and Osteocytes. To determine whether *ECR5* functions as a tissue-specific enhancer in vivo, we generated two *ECR5* TG constructs (Fig. 1 *A* and *B*). *ECR5L* included a 2-kb *ECR5* fragment upstream of the mouse β -globin minimal promoter driving β -galactosidase (*LacZ*) (Fig. 1B; *ECR5^{LacZ}*). *3XECR5s* included three tandem copies of a 255bp *ECR5* fragment upstream of the 2kb *SOST* promoter driving topaz-green fluorescent protein (*tpzGFP*) (Fig. 1B; *3XECR5^{GFP}*). *ECR5^{LacZ}* expression was compared to *Sost^{LacZ}* (*LacZ* replaced *Sost* in *Sost^{KO}*) and was found throughout the skeleton (Fig. 1 *C*–*F*). In a minority of *ECR5^{LacZ}* lines, TG expression was also observed in the vasculature and the kidney (Fig. 1 *E* and *G*). We also observed kidney expression in *3XECR5^{GFP}* but no expression in the vasculature. In neonatal calvaria, *ECR5^{LacZ}* (Fig. 1H) and *3XECR5^{GFP}*

(Fig. 1*I*) expression highlighted osteoblasts and osteocytes, and was indistinguishable from endogenous *Sost* expression (Fig. 1*J*). Both $ECR5^{LacZ}$ and $3XECR5^{GFP}$ exhibited highly similar skeletal expression pattern in all lines examined (five $ECR5^{LacZ}$ and two $3XECR5^{GFP}$ lines), with varying degrees of expression intensity. No dramatic differences were noted between $ECR5^{LacZ}$ and $3XECR5^{GFP}$ expression in the neonatal skeleton, with the

Fig. 1. TG expression of *ECR5*. (*A*) Using multiple sequence alignment, a 255-bp element, *ECR5*, was identified 62 kb downstream of *Sost* transcriptional start site. (*B*) Two TG constructs were used to generate TG mice, *ECR5L* and *3XECR5*. (*C–F*) *ECR5L* expressed *LacZ* in the entire mouse neonate skeleton. Here we show representative images of forelimbs (*C*), hindlimbs (*D*), ribs (*E*), and head (*F*). Lower expression was observed in the calvaria (ca) relative to the mandible (ma). Nonskeletal tissues expressing *LacZ* included the thoracic vasculature (red arrow) (*E*) and the kidney (G). At higher resolution, in the calvaria, *ECR5L* (*H*), *3XECR5* (*I*), and *LacZ* expressed from the endogenous mouse *Sost* locus (*J*), marked the osteocytes.

exception that $3XECR5^{GFP}$ also expressed in hypertrophic chondrocytes. Previously, we also observed TG expression in the hypertrophic chondrocytes of *SOST* TG mice, suggesting that this expression may be specific to the human promoter. These findings allowed us to conclude that the 255-bp *ECR5* element is sufficient to drive osteoblast/osteocyte-specific expression in neonatal mice, independently of the *SOST* promoter. In the adult mice, $3XECR5^{GFP}$ expression was more robust in osteocytes than *ECR5^{LacZ}*, suggesting that the *SOST* promoter is also required for high levels of osteocyte-specific expression of *Sost*.

Mef2C is Required for ECR5-mediated Sost Expression in Osteocytes. Comparative sequence and transcription factor binding site analysis predicted a Mef2 binding site within the ECR5 element, and this element was shown to be essential for ECR5 activity in vitro (12). To determine whether Mef2C is required for ECR5mediated transcriptional activation of *Sost* in vivo, we compared LacZ expression from either the $ECR5^{LacZ}$ or the *Sost*^{LacZ} allele to that of animals where the Mef2C gene has also been removed in osteoblasts and osteocytes with a Coll-Cre TG (15). This Coll-Cre TG is expressed in both osseous and nonosseous tissues: embryonically in the head and limbs, and postnatally in the skeletal system, predominantly in osteoblasts and osteocytes (16). In femora and calvaria, the LacZ expression from ECR5^{LacZ} was abolished in the absence of Mef2C (Fig. 2 A, B, E, and F). Similarly, in the femurs of $Sost^{LacZ}$ mice, >95% of osteocytes positive for Sost did not express LacZ when Mef2C was deleted (Fig. 2 C and D). A significant reduction was also observed in calvaria; however, a larger number of Sost-positive cells were retained than in the femur (Fig. 2 G and H).

We also examined *Mef2C* and *Sost* expression in cortical bone of WT and *Mef2C^{cKO}; Col1-Cre*. We found *Mef2C* mRNA levels to be reduced by ~70% (Fig. S1A) and *Sost* by ~50% (Fig. S1B) in *Mef2C^{cKO}; Col1-Cre* relative to WT controls. Growth plate chondrocytes robustly expressed Mef2C protein in WT and the expression was unchanged in the *Mef2C^{cKO}; Col1-Cre* (Fig. 3 A and E). Excision of *Mef2C* by *Col1-Cre* eliminated Mef2C protein expression in most osteoblasts and osteocytes relative to WT (Fig. 3 B, C, F, and G); particularly on the periosteal surface, all osteoblasts were negative for Mef2C in *Mef2C^{cKO}; Col1-Cre* (Fig. 3F). The same bone regions that failed to express Mef2C downregulated *Sost* expression, primarily in osteocytes (Fig. 3 D and H). These results support a model where *ECR5* directs gene expression in osteocytes, and this *ECR5*-dependent expression requires Mef2C (Fig. 2 B and F). Similarly, Mef2C is required for the majority of mouse *Sost* expression in these cells (Fig. 2 D and H).

ECR5^{KO} Mice Have Increased Bone Mass. To determine whether deleting *ECR5* causes VB, we made *ECR5*^{KO} mice (Fig. 4 *A–B*). KO mice did not differ in size or weight from their same-sex control littermates, and no overt defects were noted at birth or throughout their lives. At 6 mo of age, microscale computed tomography (μ CT) analysis of distal femur and lumbar area (L4) showed that trabecular bone volume fraction (BV/TV) in *ECR5*^{KO} was 41% (*P* < 0.000001) higher than WT (Fig. 4*G*). *ECR5*^{KO} had significantly higher connectivity density (Conn. D., Fig. 4C), trabecular number (Tb.N., Fig. 4D), and lower trabecular separation (Tb. Sp., Fig. 4F), and structure model index (SMI; Fig. 4H) compared with WT controls. In the trabecular bone compartment, a significant increase in osteoblast surface (Ob.S) and no significant change in osteoclast surface (Oc.S) was observed. We did observe a significant difference in osteoclast surface to bone surface ratio in both *Sost*^{KO} and *ECR5*^{KO} mice.

Bone formation (BFR/TV, Table 1) in $ECR5^{KO}$ mice was significantly increased for trabecular bone (more than twofold in $ECR5^{KO}$ relative to approximately threefold in $Sost^{KO}$) at the distal femur. Bone formation was also stimulated at the endocortical surface of the femur midshaft in $Sost^{KO}$, but not in

Collette et al.

Fig. 2. *Mef2C* is required for *ECR5*-dependent Sost expression, in vivo. $ECR5^{LacZ}$ transgenic mice that were also mutant for *Mef2C* did not express *LacZ* in the femur (*B*) or calvaria (*F*) relative to the $ECR5^{LacZ}$ controls (*A* and *E*). Similar results were obtained in $Mef2C^{cKO}$; *Col1-Cre*; *Sost^{KO}* double knockout animals, where *LacZ* expression was dramatically reduced in the femur (*D*) and calvaria (*H*) relative to *Sost^{LacZ}* controls (*C* and *G*).

 $ECR5^{KO}$ mice, as demonstrated by femoral cortical bone morphology via μ CT analysis: Bone area fraction (BA/TA 68.9%) was significantly increased in $Sost^{KO}$ ($P < 1 \times 10^{-10}$), compared with 47.5% in $ECR5^{KO}$ and 46.2% in WT (Fig. 4E). Consistent results were obtained through histomorphometric characterization of the cancellous bone compartment at the distal femurs, supporting a HBM phenotype in $ECR5^{KO}$ mice due to elevated bone formation rates (Table 1). In humans, the hyperostosis phenotype in VB disease has been described to be significantly milder than those for sclerosteosis (10). Consistent with the human data, we found the $ECR5^{KO}$ mice to have a significant increase in bone mass (BV/TV, more than twofold, 104% increase, P < 0.001), which is less dramatic than in $Sost^{KO}$ (more than threefold, 265% increase, $P < 1 \times 10^{-11}$); therefore, ECR5

ECR5 Is Necessary for Robust Osteocyte Sost Expression in Mice. Sost primarily marked periosteal/cortical and trabecular osteocytes, consistent with its known expression (Fig. S2). No Sost expression was detected in proliferating or hypertrophic chondrocytes. ECR5^{KO} expressed Sost in a significantly lower percentage of osteocytes (Fig. 4J) relative to WT (Fig. 4I). To determine the number of osteocytes expressing Sclerostin ~1000 matrixembedded osteocytes were examined per genotype. Of the 1071 WT osteocytes, 693 (63.4%) expressed Sclerostin (Fig. 4 I and K). Of the 984 examined $ECR5^{KO}$ osteocytes, 425 (43.11%) were positive for Sclerostin (Fig. 4 K and J); 32% less positive (P < 0.02) ECR5^{KO} osteocytes relative to WT. We found no changes in Sost expression in ECR5^{KO} mice relative to WT in kidney, brain, or liver (Fig. S3). These data indicate that deleting ECR5 reduces the probability that an osteocyte will express high levels of Sost, which quantitatively reduces Sost expression by $\sim 50\%$ (Fig. S1B). This reduction is sufficient to boost bone formation and cause HBM consistent with VB phenotypes.

Mef2C Inactivation in Bone Causes HBM Due to Elevated Bone Formation. We next examined whether targeting Mef2C in osteoblasts/osteocytes phenocopies $ECR5^{KO}$ and causes HBM in mice. $Mef2C^{cKO}$; Col1-Cre mice were born at normal Mendelian ratios and were indistinguishable from their control littermates at birth. After weaning, these mice were slightly smaller, and their tails displayed swelled protrusions due to increased ossification. Analysis of $Mef2C^{cKO}$; Col1-Cre femora and lumbar vertebrae by μ CT revealed that osteoblast inactivation of Mef2C results in HBM. In every parameter measured (Fig. 5 A-F), the absolute numbers were highly similar to those determined for $ECR5^{KO}$. $Mef2C^{cKO}$; Col1-Cre mice had significantly increased Connectivity Density (Fig. 5A), BV/TV (Fig. 5E), and decreased SMI (Fig. 5F) relative to WT controls, and similar to $ECR5^{KO}$, did not display a significant difference in the trabecular thickness (Fig. 5C). BV/TV was increased ~twofold in $Mef2C^{cKO}$; Col1-Cre mice (Fig. 5E), highly similar to the $ECR5^{KO}$ (Fig. 4G).

To determine the cellular mechanism by which the HBM phenotype is generated in Mef2C^{cKO};Coll-Cre mice, we examined the cancellous bone compartment of the distal femurs of 6-mo-old male mice using dynamic histomorphometry. Similar to $ECR5^{KO}$ and $Sost^{KO}$, $Mef2C^{cKO}$; Coll-Cre mice also displayed a slight decrease in the osteoclast surface to bone surface ratio; however, this difference was not significant. We also observed a significant increase in the mineral apposition rate (MAR) and the bone formation rate (BFR/TV, Table 1), supporting that the removal of Mef2C in osteoblasts and osteocytes phenocopies VB (Fig. 5G). Recently, it has been reported that $Mef2C^{cKO}$; Dmp1-Cre mice display HBM; however, this phenotype was shown to be driven primarily by a reduction in osteoclast activity (19). To further examine whether reduced osteoclast activity in *Mef2C^{cKO};Col1-Cre* contributes to the HBM phenotype, we measured CTX-1 and RANKL serum levels but found no significant differences between *Sost^{KO}*, *ECR5^{KO}*, and *Mef2C^{cKO};Col1-Cre* mice and WT (Fig. S4). Furthermore, we examined the expression of activated β -catenin in the femures of WT, Sost^{KO}, and Mef2C^{cKO}; *Col1-Cre* mice and found significantly elevated levels of β -catenin in both *Sost^{KO}* and *Mef2C^{cKO};Col1-Cre* mice, consistent with an up-regulation of Wnt signaling as a shared mechanism for the HBM in these genetically distinct mice (Fig. S5).

Discussion

Until recently, members of the Mef2 family of transcriptional factors (Mef2A–D) have only been described as contributors to muscle and cardiovascular function (15, 20). In 2007, Arnold et al. reported that Mef2C functions as an early regulator of chondrocyte hypertrophy (14) and showed that Mef2C indirectly controls endochondral bone formation (14). They also reported

Mef2C and *Sost* bone expression. Mef2C protein expression is unchanged in chondrocytes (*A* and *E*). On the periosteal surface, most osteoblasts were positive for Mef2C in the WT (*B*; positive cells are marked by yellow arrows) and this expression was absent in *Mef2C^{cKO};Col1-Cre* (*F*; negative cells are marked by white arrows). Fewer cortical osteocytes expressed Mef2C in *Mef2C^{cKO};Col1-Cre* (*G*; white arrows point to Mef2C negative cells) relative to WT (C, yellow arrows point to Mef2C positive cortical osteocytes was also observed in *Mef2C^{cKO};Col1-Cre* (*H*; white arrows mark Sost negative cells) relative

Fig. 3. Mef2C^{cKO};Col1-Cre mice have reduced

to WT control (D; yellow arrows mark Sost-positive cells). In B–D and F–H, Upper is the Mef2C protein signal in the green channel, and Lower is the same image showing the cell nuclei (blue channel/DAPI); arrows point to the same cells visualized in the green and blue channel.

Fig. 4. ECR5^{KO} mice have HBM due to reduced number of Sost-expressing osteocytes. ECR5 was replaced by a neo cassette, which was subsequently removed by Cre recombinase to generated ECR5^{KC} mice (A). ECR5 targeting was confirmed by Southern blot (B). µCT analysis showed significant differences between ECR5^{KO} mice and WT control littermates (C-H) consistent with $ECR5^{KO}$ mice having HBM. Fewer osteocytes expressed Sost in ECR5^{KO} mice (L) compared with WT (I); (Upper) protein signal (green channel); (Lower) the same section visualizing nuclei with DAPI (blue channel). Quantitative assessment of the number of cortical osteocytes expressing Sost in ECR5^{KO} relative to WT identified a ~30% reduction in Sost-positive cells, in ECR5^{KO} mice (K). Yellow arrows point to Sost-positive cells; white arrows point to Sost-negative osteocytes.

GENETICS

that Mef2A, -C, and -D are expressed in the emerging endochondral bone, in the late embryonic spongiosa (14). Subsequently, we showed that Sost expression is modulated by PTH through a Mef2 responsive element, present in the distal ECR5 Sost enhancer (12). The results of the study presented here reveal the following insights into the molecular basis of transcriptional regulation of Sost in bone: (i) ECR5 is sufficient to drive tissue-specific expression in osteoblasts and osteocytes in vivo (Fig. 1J). (ii) SOST promoter is not required for neonatal expression of ECR5-dependent TGs, but is needed for high levels of TG expression in adult osteocytes (Fig. 2A vs. 2C and 2E vs. 2G). (iii) In the absence of ECR5 \sim 30% less osteocytes express Sost (Fig. 5). (iv) $ECR5^{KO}$ mice have HBM due to elevated bone formation rates resembling VB phenotypes (Fig. 4 E–J). (v) Mef2C is important in osteocytes for the activity of ECR5-dependent Sost transcription (Fig. 2B, D, F, and H). (vi) Mef2C deletion from osteoblasts and osteocytes yields HBM and increased bone formation, and displays bone parameters that are similar to $ECR5^{KO}$ (Fig. 5A-F), suggesting that Mef2C is the main transcriptional regulator of ECR5-dependent Sost expression.

Although several regulatory sequences have been characterized and shown to have tissue-specific activity in bone, such as Colla1(3.6) (21, 22) and Dmp1 (23, 24) the regulatory sequences in these constructs were derived from promoter proximal regions only. *ECR5* represents a distal enhancer that has osteoblast- and osteocyte-specific activity in vivo and is located ~62 kb away from the *Sost* transcriptional start site. *ECR5* is located in the VB region that is deleted from both alleles in VB, and the evidence we present indicates that the human phenotypes are, in part, dependent on the absence of *ECR5* and its interaction with the *SOST* promoter; we also show that *ECR5^{KO}* recapitulates VB in mice. Currently, there is only one other report of a distal transcriptional enhancer: the *RankL* distal regulatory enhancer (DCR) that affects bone mass. When deleted, DCR caused HBM due to reduced osteoclast activity, leading to a lower rate of bone remodeling similar to that observed in humans and mice with hypoparathyroidism (25, 26).

Because Sost is an inhibitor of an anabolic pathway, there is great interest in elucidating how Sost is regulated transcriptionally and posttranslationally, since modulating Sost levels has profound consequences downstream of Wnt signaling ranging from promoting bone formation (Sost deficiency) (4, 27) to accelerating bone loss (Sost overexpression) (7, 28), to enhancing bone repair (29). Here, we provide genetic evidence that Mef2C is important in bone for transcriptional activation of Sost in osteocytes, and hence functions as an upstream regulatory protein and modulator of Wnt signaling. In addition to Sfrp2/3 (19), Sost represents a Mef2C transcriptional target in bone; therefore, other Mef2C-dependent transcripts will likely be found in osteoblasts and osteocytes. It is also likely that, through its known corepressor partners, the type II HDAC proteins (14, 20), Mef2C may also serve as a key intermediary in the transmission of extracellular signals to the genome in bone. Further studies of Mef2C-Sost-Wnt signaling axis are likely to reveal basic mechanisms of bone formation and homeostasis, and it should be possible to modulate complex metabolic phenotypes through the manipulation of Sost and Mef2C activities in animal models.

Materials and Methods

Generation of ECR5^{KO}, ECR5L, 3XECR5, and compound Mice. A 338-bp *ECR5* region (101782666-101782996; chr 11) was replaced with a floxed Neo cassette using Velocigene (30) and homologous recombination (31–33) in BAC RP23_252b10. The modified BAC was digested with *SgrA1* and electroporated into ES line F1H4 (C57BL/6–129SvJ hybrid). Targeted ES cell clones were identified using Loss of Allele assay and verified by Southern blot. Two clones (VG1369B-C4/VG1369B-D2) were used to generate mice; both lines had the same HBM phenotype. *ECR5L* and *3XECR5* were PCR amplified

PNAS | August 28, 2012 | vol. 109 | no. 35 | 14095

Table 1.	Bone phenotying based on histomorphometric indices in the cancellous bone compartment of the distal femurs of 6-mo-old
ECR5 ^{KO} , S	Sost ^{Ko} , and <i>Mef2C^{cKo};Col1-Cre</i> male mice compared with WT controls

Histomorphometric index	WT	ECR5 ^{KO}	% change	Sost ^{KO}	% change	WT	Mef2С ^{ско}	% change
BV/TV	7.79 ± 4.02	15.894 ± 5.833*	+104	28.45 ± 2.79*	+265	0.127 ± 0.02	0.201 ± 0.05*	+58
BS/BV	70.90 ± 20.54	48.86 ± 12.54*	-31	39.89 ± 4.82*	-44	56.72 ± 9.92	40.39 ± 7.68*	-29
Tb.Dm (Plate)	30.33 ± 8.39	43.82 ± 12.57*	+44	50.85 ± 6.77*	+68	—	—	—
Tb.N (Plate)	2.53 ± 1.16	4.26 ± 1.67*	+68	5.63 ± 0.94*	+122	—	—	_
Tb.Sp (Plate)	438.3 ± 211.7	222.6 ± 83.80*	-49	131.81 ± 29.82*	-70	—	—	—
Tb.Dm (Rod)	—	—	—	—	—	0.072 ± 0.010	$0.097 \pm 0.02*$	+35
Tb.N (Rod)	—	—	—	—	—	5.652 ± 0.87	5.299 ± 0.81	-6
Tb.Sp (Rod)	—	—	—	—	—	0.108 ± 0.02	$0.086 \pm 0.01*$	-20
Ob.S	2.62 ± 1.11	5.956 ± 1.89*	+127	6.143 ± 1.68*	+134	1.402 ± 1.55	3.326 ± 4.40	+137
Ob.S/BS	14.42 ± 3.93	17.730 ± 6.54*	+23	17.16 ± 2.62	+19	0.130 ± 0.15	0.046 ± 0.02	-65
Oc.S	1.64 ± 0.76	1.404 ± 0.364	-14	1.623 ± 0.38	-1	1.743 ± 1.25	1.219 ± 0.73	-30
Oc.S/BS	8.92 ± 3.29	4.426 ± 1.87*	-50	$4.608 \pm 0.89*$	-48	0.067 ± 0.04	0.049 ± 0.02	-27
MAR (µm/d)	2.06 ± 0.36	2.634 ± 0.324*	+28	2.938 ± 0.165*	+42	0.981 ± 0.15	1.368 ± 0.33*	+39
BFR/BS	0.79 ± 0.19	1.188 ± 0.40*	+50	1.035 ± 0.28	+31	0.073 ± 0.02	0.108 ± 0.13	+48
BFR/BV	56.29 ± 23.36	59.89 ± 32.58	+6	40.062 ± 7.96	-29	3.027 ± 1.46	2.829 ± 1.66	-7
BFR/TV	3.87 ± 1.41	8.371 ± 2.84*	+116	11.46 ± 2.57*	+196	0.306 ± 0.12	0.736 ± 0.22*	+141

Data represent mean \pm SD for parameters measured. Group size n = 5-10. *P < 0.05. BFR, bone formation rate; BS, bone surface; BV, bone volume; MAR, mineral apposition rate; Ob.S, osteoblast surface; Oc.S, osteoclast surface; Tb.Dm, trabecular diameter; Tb.N, trabecular number; Tb.Sp, trabecular separation; TV, total volume; —, no measurements were conducted.

from human genomic DNA using 5'-GCCAGTCTACTGCCATTGTCC-3' 5'-GGGCAGAGATTTCTAGGGGTG-3' and 5'-AATTCTAGCCACTCCCAGGCA-3' 5'-AATTCGGCTCCCCTCATGGCTGGT-3' primer sets, respectively, and cloned into pCR2.1 vector. *ECR5L* was cloned into β -globin LacZ vector (gift from M. Nobrega, University of Chicago, Chicago, IL), and three copies of *ECR5*s were cloned in combination with the human SOST promoter we described (7) and topazGFP (gift from D. Rowe, University of Connecticut, Farmington, CT). Plasmid DNA was prepared and injected to generate TG mice as described (34). Pups were genotyped by PCR.

Sost^{KO} mice (Sost^{KO}/_K)^{Keg}) were generated by a *LacZ* replacement of the entire Sost ORF. *ECR5^{LacZ}* or Sost^{KO} mice were mated to the described $Mef2C^{cKO}$ (15) and *Col1-Cre* transgenic mice (16) to generate $Mef2C^{cKO}$;*Col1-Cre; ECR5^{LacZ}* and $Mef2C^{cKO}$;*Col1-Cre; Sost^{KO}* mice. Genotyping was carried out by PCR. All animal experiments were carried out in accordance with

Fig. 5. *Mef2C^{cKO};Col1-Cre* mice have HBM. μCT analysis of *Mef2C^{cKO};Col1-Cre* mice showed significant differences between *Mef2C^{cKO};Col1-Cre* mice and WT control littermates (*A–F*) consistent with *Mef2C^{cKO};Col1-Cre* mice having HBM. *Mef2C^{cKO}; Col1-Cre* mice having HBM. *Mef2C^{cKO}; Col1-Cre* mice had significantly increased connectivity density (*A*), bone volume/total volume ratio (BV/TV) (*E*), and significantly decreased trabecular separation in the distal femur (*D*) and SMI (*F*). No significant differences were observed in trabecular separation (*D*). Quantitatively and qualitatively, the bones of *Mef2C^{cKO};Col1-Cre* mice had higher BMD than WT and less than Sost^{KO} and were indistinguishable from *ECR5^{KO}* mice (*G*).

Collette et al.

Down

guidelines set by the Institutional Animal Care and Use Committees at University of California, Berkeley, and Lawrence Livermore National Laboratory.

μCT and Histomorphometry. Distal femurs, midfemoral cortical bone, and lumbar (L4) vertebrae were scanned using VivaCT-40 and μCT35 (Scanco Medical) with an isotropic voxel size at 10 or 6 μm. For the metaphysic trabecular bone in distal femur, transverse CT slices were evaluated in the region starting 0.1mm proximal to the growth plate and extending 2mm proximally. Trabecular bone was separated from cortical bone with manually drawn contour lines, and trabecular bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th, mm), trabecular number (Tb.N, mm⁻¹), trabecular separation (Tb.Sp, mm), connectivity density (ConnD, 1/mm³), and structure model index (SMI) were determined (SMI quantifies the characteristic form of a three-dimension structure as an index of plates or rods in the bone composition). For the femoral midshaft cortical bone, total cross-sectional area (bone plus bone marrow area) (TA, mm²), cortical bone area (BA, mm²), bone marrow area (MA, mm²), and bone area fraction (BA/TA, %) were calculated.

- 1. Yadav VK, Ducy P (2010) Lrp5 and bone formation: A serotonin-dependent pathway. Ann N Y Acad Sci 1192:103–109.
- Gong Y, et al.Osteoporosis-Pseudoglioma Syndrome Collaborative Group (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. *Cell* 107: 513–523.
- 3. Cui Y, et al. (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17: 684–691.
- Li X, et al. (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869.
- Brunkow ME, et al. (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589.
- Balemans W, et al. (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). *Hum Mol Genet* 10:537–543.
- Loots GG, et al. (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. *Genome Res* 15:928–935.
- Van Wesenbeeck L, et al. (2003) Six novel missense mutations in the LDL receptorrelated protein 5 (LRP5) gene in different conditions with an increased bone density. *Am J Hum Genet* 72:763–771.
- Babij P, et al. (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18:960–974.
- Balemans W, et al. (2002) Identification of a 52 kb deletion downstream of the-SOST gene in patients with van Buchem disease. J Med Genet 39:91–97.
- Staehling-Hampton K, et al. (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. *Am J Med Genet* 110:144–152.
- 12. Leupin O, et al. (2007) Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res 22:1957–1967.
- Loots GG, et al. (2012) TGF-β regulates sclerostin expression via the ECR5 enhancer. Bone 50:663–669.
- Arnold MA, et al. (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389.
- Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407.
- Liu F, et al. (2004) Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol 48:645–653.
- Lakso M, et al. (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci USA 93:5860–5865.
- Gardner JC, et al. (2005) Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90:6392–6395.
- Kramer I, Baertschi S, Halleux C, Keller H, Kneissel M (2012) Mef2c deletion in osteocytes results in increased bone mass. J Bone Miner Res 27:360–373.

Bone Histomorphometry. Bone histomorphometry was performed using semiautomatic image analysis (Bioquant Image Analysis) as described (36).

Sost-Positive Cell Scoring. Two animals, 16 slide sections, 250 cells per scoring for up to ~1,000 cells per genotype were examined. Slides were imaged, encompassing the entire mineralized area of the section. Cells were scored as positive if both DAPI and Sost immunostain were present, negative if DAPI was present without any evidence of immunostain. Percentages (% positive) were calculated for each replicate of 250 cells, and compared using Student's paired *t* test. Data are expressed as an average % positive of all replicates + SD.

ACKNOWLEDGMENTS. We thank Dr. Schwarz for providing the $Mef2C^{cKO}$; and Deepa Murugesh, Cindy Thomas, and Salustra Urbin for technical assistance with animal breeding, tissue collection, and sample preparation. G.G.L. and N.M.C. were supported by NIH Grants HD47853 and DK075730; D.C.G. was supported by NIH Grants DK075730 and AR057547. This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

- Potthoff MJ, Olson EN (2007) MEF2: A central regulator of diverse developmental programs. *Development* 134:4131–4140.
- Bogdanovic Z, et al. (1994) Upstream regulatory elements necessary for expression of the rat COL1A1 promoter in transgenic mice. J Bone Miner Res 9:285–292.
- Zha L, et al. (2008) Collagen1alpha1 promoter drives the expression of Cre recombinase in osteoblasts of transgenic mice. J Genet Genomics 35:525–530.
- Kalajzic I, et al. (2004) Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. *Bone* 35:74–82.
- Lu Y, et al. (2007) DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res 86:320–325.
- Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW (2006) Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. *Mol Cell Biol* 26:6469–6486.
- Galli C, et al. (2008) Targeted deletion of a distant transcriptional enhancer of the receptor activator of nuclear factor-kappaB ligand gene reduces bone remodeling and increases bone mass. *Endocrinology* 149:146–153.
- Kramer I, Loots GG, Studer A, Keller H, Kneissel M (2010) Parathyroid hormone (PTH)induced bone gain is blunted in SOST overexpressing and deficient mice. *J Bone Miner Res* 25:178–189.
- Winkler DG, et al. (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276.
- Ominsky MS, et al. (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res 26:1012–1021.
- Valenzuela DM, et al. (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659.
- Liu Q, Li MZ, Leibham D, Cortez D, Elledge SJ (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. *Curr Biol* 8:1300–1309.
- Narayanan K, Williamson R, Zhang Y, Stewart AF, Ioannou PA (1999) Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. *Gene Ther* 6: 442–447.
- Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128.
- Pennacchio LA, et al. (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444:499–502.
- Collette NM, Genetos DC, Murugesh D, Harland RM, Loots GG (2010) Genetic evidence that SOST inhibits WNT signaling in the limb. *Dev Biol* 342:169–179.
- Ionova-Martin SS, et al. (2011) Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int 22:2283–2293.

GENETICS